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Abstract. General Hermite and Laguerre two-dimensional (2D) polynomials which form a
(complex) three-parameter unification of the special Hermite and Laguerre 2D polynomials are
defined and investigated. The general Hermite 2D polynomials are related to the two-variable
Hermite polynomials but are not the same. The advantage of the newly introduced Hermite and
Laguerre 2D polynomials is that they satisfy orthogonality relations in a direct way, whereas for
the purpose of orthonormalization of the two-variable Hermite polynomials two different sets
of such polynomials are introduced which are biorthonormal to each other. The matrix which
plays a role in the new definition of Hermite and Laguerre 2D polynomials is in a considered
sense the square root of the matrix which plays a role in the definition of two-variable Hermite
polynomials. Two essentially different explicit representations of the Hermite and Laguerre 2D
polynomials are derived where the first involves Jacobi polynomials as coefficients in superpositions
of special Hermite or Laguerre 2D polynomials and the second is a superposition of products of two
Hermite polynomials with decreasing indices and with coefficients related to the special Laguerre
2D polynomials. Generating functions are derived for the Hermite and Laguerre 2D polynomials.

1. Introduction

In [1, 2], we introduced and discussed special Laguerre two-dimensional (2D) functions and
in [3] the corresponding Laguerre 2D polynomials. The Laguerre 2D functions are related
to the Laguerre 2D polynomials in such a way that they take into account the necessary
weight factor for the orthonormalization of the latter. They are eigenfunctions of the 2D
harmonic oscillator. The Laguerre 2D polynomials which contain the generalized Laguerre
polynomials as a substantial part are defined in a form which is very near to the form in
which the usual Laguerre polynomials are mostly applied in 2D problems. The Laguerre
2D polynomials are analogous to products of two Hermite polynomials and are related to
them by a transformation which corresponds in quantum optics to the transition from linear
polarization to circular polarization or for a beamsplitter to the splitting of a beam into two
partial beams of equal intensity. However, there are problems which need more general kinds
of polynomials related to Hermite and Laguerre polynomials, for example, the transition to
general elliptical polarization or general beamsplitting. In classical optics a related problem is
the transformation from Hermite–Gauss and Laguerre–Gauss beams to more general types of
beams in the paraxial approximation, e.g. [4–10]. For these and other purposes, in this paper
we introduce and investigate a new form of general Hermite and Laguerre 2D polynomials
which make a (complex) three-parameter unification of the special Hermite and Laguerre 2D
polynomials corresponding to the groupSL(2, C) or to its subgroups in special cases.

There already exist two-variable Hermite polynomials [11–24] which make a continuous
three-parameter unification of products of two Hermite polynomials with special superpositions
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of such products. However, these two-variable Hermite polynomials are not orthonormalized to
each other and for this purpose it is necessary, apart from weight functions, to introduce a second
dual kind of two-variable Hermite polynomial and the pairs of these two sets of two-variable
Hermite functions then obey biorthonormality relations. However, there is another possibility
to introduce a kind of Hermite or Laguerre 2D polynomials which makes this unification
and satisfies additionally orthonormality relations without introduction of a different kind of
polynomials. This can be achieved by a new definition where a 2D matrix plays a role which,
in a certain sense we have to explain, is the square root of the matrix in the definition of the
two-variable Hermite polynomials.

In section 2, we develop some important relations for powers of linear transformations of
2D vectors with application of Jacobi polynomials which are necessary for the introduction
and discussion of Hermite 2D polynomials in section 3 and of Laguerre 2D polynomials in
section 4. In section 5, we derive the orthogonality relations. In section 6 we investigate the
degenerate case of a vanishing determinant of the transformation. Then we discuss briefly
the relations between Hermite and Laguerre 2D polynomials in section 7 before we derive the
generating functions for Hermite and Laguerre 2D polynomials in section 8. In section 9, we
investigate a specific ‘square root problem’ for symmetric 2× 2 matrices, which is needed to
establish the relations between Hermite 2D polynomials and the usual two-variable Hermite
polynomials that is made in section 10 and we discuss there the advantages of the new concept
of the introduction of Hermite and Laguerre 2D polynomials in comparison to the known
concept of two-variable Hermite polynomials.

2. Jacobi polynomials applied to powers of linear transformations of 2D vectors

In this section, we prepare a treatment of powers of linear transformations of 2D vectors
that avoids frequent and inconvenient interruptions in the following sections by mathematical
problems. This treatment is connected with the application of Jacobi polynomials and we start
with their definition and with some of their basic properties.

The Jacobi polynomialsP (α,β)j (u) can be defined in the following way [11, 25–27]:

P
(α,β)

j (u) ≡ (−1)j

2j j !(1− u)α(1 +u)β
∂j

∂uj

{
(1− u)j+α(1 +u)j+β

}
(2.1)

and they possess the following explicit representations [2, 11, 26–28]:

P
(α,β)

j (u) =
j∑
k=0

(j + α)!(j + β)!

k!(j + α − k)!(j − k)!(k + β)!

(
1
2(u− 1)

)j−k ( 1
2(u + 1)

)k
= (j + α)!

(j + α + β)!

j∑
l=0

(2j + α + β − l)!
l!(j + α − l)!(j − l)!

(
1
2(u− 1)

)j−l
. (2.2)

The second form can be obtained from the first one by applying the binomial formula to the
decomposition{(u + 1)/2}k = {(u − 1)/2 + 1}k and by reordering of the arising double sum
with evaluation of one sum. The Jacobi polynomials are available as programmed functions
in Stephen Wolfram’sMathematica.

The results of the summations in (2.2) are expressible in simple closed form for arbitrary
indices(j, α, β) only for the argumentsu = ±1 and in the limiting case|u| → ∞,

P
(α,β)

j (1) = (j + α)!

j !α!
P
(α,β)

j (−1) = (−1)j
(j + β)!

j !β!

lim
|u|→∞

(
2

u

)j
P
(α,β)

j (u) = (2j + α + β)!

j !(j + α + β)!
.

(2.3)
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The Jacobi polynomials satisfy the following transformation relations which can be proved by
using the definition or the explicit representations [28]:

P
(α,β)

j (u) = (j + α)!(j + β)!

j !(j + α + β)!

(
2

u− 1

)α
P
(−α,β)
j+α (u)

= (j + α)!(j + β)!

j !(j + α + β)!

(
2

u + 1

)β
P
(α,−β)
j+β (u)

=
(

2

u− 1

)α ( 2

u + 1

)β
P
(−α,−β)
j+α+β (u)

P
(α,β)

j (u) = (−1)jP (β,α)j (−u) P
(α,β)

j (u∗) = (P (α,β)j (u)
)∗
.

(2.4)

For equal upper indices, the Jacobi polynomials are related in a simple way to Gegenbauer (or
ultraspherical) polynomialsCλj (u) as follows [11, 22, 26]:

P
(α,α)
j (u) = uj

[j/2]∑
k=0

(j + α)!

k!(j − 2k)!(k + α)!

(
u2 − 1

4u2

)k
= (j + α)!(2α)!

(j + 2α)!α!
C
α+ 1

2
j (u)

C
α+ 1

2
j (u) = 1

0
(
α + 1

2

) [j/2]∑
k=0

(−1)k0
(
j − k + α + 1

2

)
k!(j − 2k)!

(2u)j−2k.

(2.5)

For argumentu = 0, one obtains from these relations

P
(α,α)
2l (0) = (−1)l(2l + α)!

22l l!(l + α)!
P
(α,α)
2l+1 (0) = 0. (2.6)

This shows that(−4)lP (m−2l,m−2l)
2l (0) are the binomial coefficients

(
m

l

) = m!/(l!(m − l)!).
Some other special values and relations one finds by application of the transformations (2.4)
to the written relations.

We now consider general homogeneous linear transformations of 2D vectors and write
their components (real or complex ones) in the form of column vectors as follows:(

x1

x2

)
→
(
x ′1
x ′2

)
=
(
U11 U12

U21 U22

)(
x1

x2

)
=
(
U11x1 +U12x2

U21x1 +U22x2

)
. (2.7)

The transformation matrixU and its inverseU−1 are defined by

U =
(
U11 U12

U21 U22

)
U−1 = 1

|U |

(
U22 −U12

−U21 U11

)
|U | ≡ U11U22− U12U21

(2.8)

where|U | denotes the determinant ofU . In many applications (e.g. a lossless beamsplitter,
light polarization of a two-mode system) the 2D matrixU is a unitary unimodular matrix
U−1 = U†, |U | = 1, but for generality, we do not make such an assumption from the beginning
and consider general 2D matricesU including the degenerate case|U | = 0. The corresponding
transformation of the operators of partial differentiation can be written in the following matrix
form with row vectors for the differentiation operators:(

∂

∂x1
,
∂

∂x2

)
=
(
∂

∂x ′1
,
∂

∂x ′2

)(
U11 U12

U21 U22

)
. (2.9)
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It is of basic importance for our further considerations to express the transformations of powers
of x1 andx2 in the simplest way. By application of the binomial formula and reordering of the
sum terms, one finds

x ′m1 x
′n
2 = (U11x1 +U12x2)

m(U21x1 +U22x2)
n

= Um
12U

n
22

m+n∑
j=0

x
j

1x
m+n−j
2

(
U21

U22

)j j∑
k=0

m!n!

k!(m− k)!(j − k)!(n− j + k)!

(
U11U22

U12U21

)k
.

(2.10)

This can be written in compact form by using the Jacobi polynomials given in (2.2)

x ′m1 x
′n
2 =

m+n∑
j=0

U
m−j
12 U

n−j
22 |U |jP (m−j,n−j)j

(
U11U22 +U12U21

U11U22− U12U21

)
x
j

1x
m+n−j
2

=
(√
|U |

)m+n m+n∑
j=0

(
U12√|U |

)m−j (
U22√|U |

)n−j
P
(m−j,n−j)
j

(
1 + 2

U12U21

|U |
)
x
j

1x
m+n−j
2 .

(2.11)

The identity transformationU = I is connected with the argumentu = 1 of the Jacobi
polynomials in (2.11). The transformation relations (2.4) allow one to write (2.11) in many
slightly different forms, for example, in forms where the identity transformation is connected
with the argumentu = −1 in the Jacobi polynomials or where the ‘natural’ order of the upper
indices(m − j, n − j) is reversed into(n − j,m − j). The compositionW = UV of two
transformationsU andV leads to a composition of powers of the components(x1, x2) of 2D
vectors from which, in connection with relation (2.11), one can derive an addition theorem for
the Jacobi polynomials. This is made in appendix A.

One can see from (2.11) that the sum depends only onU ′ ≡ U/
√|U | and that the

determinant|U | appears only in a scaling factor
(√|U | )m+n

of the transformation. Therefore,
for most purposes, it is sufficient to consider only unimodular matricesU ′ which means

|U ′| ≡ U ′11U
′
22− U ′12U

′
21 = 1. (2.12)

The degenerate case of a vanishing determinant|U | = 0 makes an exception and has to be
considered separately (section 6). For unimodular transformationsU ′, relation (2.11) simplifies
according to (the specialization to unimodular matrices is marked in the following by a prime
at the corresponding matrices)

x ′m1 x
′n
2 =

m+n∑
j=0

U
′m−j
12 U

′n−j
22 P

(m−j,n−j)
j

(
1 + 2U ′12U

′
21

)
x
j

1x
m+n−j
2

=
m+n∑
j=0

U
′m−j
11 U

′n−j
21 P

(n−j,m−j)
j

(
1 + 2U ′12U

′
21

)
x
m+n−j
1 x

j

2 |U ′| = 1. (2.13)

The argument of the Jacobi polynomials in (2.13) remains, in general, a complex number.
The set of transformations (2.11) with, in general, complex components of the matrix

U and with|U | 6= 0 forms the two-dimensional complex linear groupGL(2, C) with eight
independent real parameters. However, we have seen that for most purposes it is sufficient
to restrict ourselves without essential loss of generality to the two-dimensional special linear
(or unimodular) or symplectic groupSL(2, C) ∼ Sp(2, C) determined by the additional
condition|U | = 1 and containing six independent real parameters involved in three complex
components ofU . An interesting subgroup ofSL(2, C) for applications is the two-dimensional
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special unitary groupSU(2) with three real parameters (a lossless beamsplitter and two-mode
polarization). Other interesting subgroups ofSL(2, C) for applications are the physically
different groupsSL(2, R) ∼ Sp(2, R) ∼ SU(1, 1)with three real parameters, whereSp(2, R)
denotes the two-dimensional real symplectic group andSU(1, 1) the group of transformations
with determinant|U | = 1 preserving the indefinite Hermitian formzz∗−ww∗ of two complex
variablesz andw. However, we do not discuss this here in detail.

3. Definition of Hermite 2D polynomials

In this section, we define general Hermite 2D polynomials by means of arbitrary 2D matrices
U . They are related to two-variable Hermite polynomials [11], but they are not identical to
them and this is taken into account by the new name Hermite 2D polynomials and by the
notation. We discuss the relations to two-variable Hermite polynomials in section 10.

Hermite 2D polynomials are sets of polynomials of two independent variables denoted
by (x, y) and depending additionally on an arbitrary 2D matrixU as a parameter. If the
determinant ofU is non-vanishing(|U | 6= 0), then the polynomials for the consideredU and
for the two corresponding unimodular matricesU ′ ≡ U/√|U | with the two possible signs of
the square root are related in a very simple way that makes it possible to restrict oneself in
most cases of application or in proofs to unimodular matricesU ′. Our aim is a definition with
the boundary condition that products of two Hermite polynomials appear as a special case of
Hermite 2D polynomials to the 2D unit matrixU = I which means

Hm,n(I ; x, y) ≡ Hm(x)Hn(y)

= exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}
(2x)m(2y)n

= (−1)m+n exp
(
x2 + y2

) ∂m+n

∂xm∂yn
exp

(−x2 − y2
)
. (3.1)

We have written here the Hermite polynomials by two different but equivalent definitions from
which the first [29, 30] (equation (31)) [31–33] is up to now not as well known as the second
one.

We now consider the first of the definitions of the product of two Hermite polynomials
in (3.1). Its generalization by the introduction of an arbitrary 2D matrixU can be made in
the following way. We first consider the homogeneous linear transformation of the variables
(x, y) according to(
x ′

y ′

)
=
(
Uxx Uxy

Uyx Uyy

)(
x

y

)
⇔

(
∂

∂x
,
∂

∂y

)
=
(
∂

∂x ′
,
∂

∂y ′

)(
Uxx Uxy

Uyx Uyy

)
(3.2)

and then we define by substitution(x → x ′, y → y ′) in (3.1)

Hm,n(U ; x, y) ≡ exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}
(2x ′)m(2y ′)n. (3.3)

We call the general Hermite 2D polynomialsHm,n(U ; x, y) simply Hermite 2D polynomials
and add in the special caseHm,n(I ; x, y) ≡ Hm(x)Hn(y), if necessary, the attribute ‘special’
and call them special Hermite 2D polynomials.

We have now two possibilities to continue starting from definition (3.3). If one expresses
(x ′, y ′) according to (3.2) then this definition leads to

Hm,n(U ; x, y) = 2m+n exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}
(Uxxx +Uxyy)

m(Uyxx +Uyyy)
n. (3.4)
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On the other hand, if one substitutes the second-order partial derivatives in the exponent in
(3.3) according to (3.2) then this leads to

Hm,n (U ; x, y) = 2m+n exp

{
−1

4

( (
U2
xx +U2

xy

) ∂2

∂x ′ 2
+
(
U2
yx +U2

yy

) ∂2

∂y ′ 2

+2
(
UxxUyx +UxyUyy

) ∂2

∂x ′∂y ′

)}
x ′my ′ n (3.5)

where the arguments(x, y) in the Hermite 2D polynomialsHm,n(U ; x, y) on the left-hand side
may be substituted byx = (Uyyx ′ −Uxyy ′)/|U | andy = (−Uyxx ′+Uxxy ′)/|U | to show equal
variables on both sides. From both formulae (3.4) and (3.5) for the Hermite 2D polynomials,
one can derive essentially different basic representations of these polynomials.

The ‘disentanglement’ of powers(Uxxx + Uxyy)m(Uyxx + Uyyy)n is connected with the
application of Jacobi polynomialsP (α,β)j (u) and by using (2.11), one obtains from (3.4)

Hm,n(U ; x, y) = exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}(√
|U |

)m+n m+n∑
j=0

(
Uxy√|U |

)m−j (
Uyy√|U |

)n−j

×P (m−j,n−j)j

(
1 + 2

UxyUyx

|U |
)
(2x)j (2y)m+n−j . (3.6)

Now, by using the alternative definition of the Hermite polynomialsHn(z) by application of the
operator exp(− 1

4∂
2/∂z2) to(2z)n, one obtains from (3.6) the following first basic representation

of the Hermite 2D polynomials:

Hm,n(U ; x, y) =
(√
|U |

)m+n m+n∑
j=0

(
Uxy√|U |

)m−j (
Uyy√|U |

)n−j

×P (m−j,n−j)j

(
1 + 2

UxyUyx

|U |
)
Hj(x)Hm+n−j (y). (3.7)

From this representation or from (3.4), one finds (‘∗’ denotes ‘complex conjugation’)

Hm,n(λU ; x, y) = λm+nHm,n(U ; x, y)
(
Hm,n(U ; x, y)

)∗ = Hm,n(U ∗; x, y)
Hm,n(−U ; x, y) = (−1)m+nHm,n(U ; x, y) = Hm,n(U ;−x,−y)

(3.8)

where the latter shows thatHm,n(U ; x, y) possesses the parity(−1)m+n. From (3.7), it follows

Hm,n(U ; x, y) =
(√
|U |

)m+n
Hm,n

(
U ′; x, y) U ′ ≡ U√|U | |U ′| = 1. (3.9)

This relation shows explicitly that the definition of the Hermite 2D polynomials for an arbitrary
matrixU instead of corresponding unimodular matricesU ′ brings additionally only a factor(√|U | )m+n

in front of the Hermite 2D polynomial. Therefore, for most purposes it is sufficient
to restrict oneself to unimodular matricesU ′ with the exception of the degenerate case|U | = 0
which we treat in section 6. We mention here that to an arbitrary matrixU with |U | 6= 0 there
exist two related unimodular matricesU ′ = U/√|U | corresponding to the two possible signs
of the square root

√|U |.
Starting from (3.5), we now derive two other interesting representations of the Hermite

2D polynomials which are essentially different in their structure from the representation in
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(3.7). The first partial step is to establish the following identity by Taylor series expansion of
the exponential operator:

exp

{
−UxxUyx +UxyUyy

2

∂2

∂x ′∂y ′

}
x ′my ′n

=
{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)!
(

1
2(UxxUyx +UxyUyy)

)j
x ′m−j y ′ n−j . (3.10)

If we now act with the remaining operator in (3.5) on both sides of (3.10), we obtain

Hm,n(U ; x, y) =
(√
U2
xx +U2

xy

)m (√
U2
yx +U2

yy

)n
×
{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)!

2
UxxUyx +UxyUyy√

(U2
xx +U2

xy)(U
2
yx +U2

yy)

j

×Hm−j
Uxxx +Uxyy√

U2
xx +U2

xy

Hn−j
Uyxx +Uyyy√

U2
yx +U2

yy

 (3.11)

where(x ′, y ′) are resubstituted as linear combinations of(x, y) according to (3.2). Thus we
have derived in (3.11) the second basic representation of Hermite 2D polynomials which is
very different in its structure from the representation in (3.7). Such a structure, as a result of
calculations, happens relatively often in two-dimensional problems, in particular, in quantum
optics (ordered moments and Fock-state representation of states), whereas then the possible
equivalent representation (3.7) is usually unknown.

We now derive a third representation which is nearer to (3.11) than to (3.7). We obtain this
representation if we first accomplish in (3.5) the operations leading to Hermite polynomials
which we then represent by their explicit form according to

exp

{
−1

4

((
U2
xx +U2

xy

) ∂2

∂x ′2
+
(
U2
yx +U2

yy

) ∂2

∂y ′2

)}
(2x ′)m(2y ′)n

=
[m/2]∑
k=0

[n/2]∑
l=0

(−1)k+lm!n!

k!(m− 2k)!l!(n− 2l)!

× (U2
xx +U2

xy

)k
(2x ′)m−2k

(
U2
yx +U2

yy

)l
(2y ′)n−2l . (3.12)

Then, by applying the remaining operator in (3.5) to (3.12) and by using the special Laguerre
2D polynomialsLm,n(z, z∗) introduced in [3] (see also (4.1) of the present paper) with variables
(x ′′, y ′′) instead of(z, z∗), we find the following representation of the Hermite 2D polynomials:

Hm,n(U ; x, y) =
(√

2(UxxUyx +UxyUyy)
)m+n

×
[m/2]∑
k=0

[n/2]∑
l=0

(−1)k+lm!n!

k!(m− 2k)!l!(n− 2l)!

(
U2
xx +U2

xy

)k (
U2
yx +U2

yy

)l(
2
(
UxxUyx +UxyUyy

))k+l
×Lm−2k,n−2l

( √
2 (Uxxx +Uxyy)√
UxxUyx +UxyUyy

,

√
2 (Uyxx +Uyyy)√
UxxUyx +UxyUyy

)
. (3.13)

This representation seems to be less successful than (3.11) because here one has a double sum
in comparison to a simple sum in (3.11), but it is important to know all the essentially different
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representations. Taken together, the representations (3.11) and (3.13) show that the Hermite
2D polynomials possess features of a mixing of the structures of the special Hermite 2D and
Laguerre 2D polynomials.

Up to now, we have only generalized the first of the two alternative definitions of the
special Hermite 2D polynomialsHm,n(I ; x, y) in (3.1) to the definition ofHm,n(U ; x, y).
Since the definition ofHm,n(U ; x, y) is now already made, we have to establish the necessary
generalization of the second form of the definition ofHm,n(I ; x, y) in (3.1) in a consistent
way. Starting from the explicit form (3.7) of the Hermite 2D polynomialsHm,n(U ; x, y), we
introduce the usual definition of Hermite polynomials as can be seen from (3.1) and by using
the transformation of powers of linear combinations of components of 2D vectors in (2.11),
we obtain

Hm,n(U ; x, y) = (−1)m+n exp
(
x2 + y2

) ∂m+n

∂x ′′m∂y ′′ n
exp

(−x2 − y2
)
. (3.14)

Contrary to (3.2), here we have the following linear transformations of the partial derivatives
and of the vector components:

∂

∂x ′′

∂

∂y ′′

 =
(
Uxx Uxy

Uyx Uyy

)
∂

∂x

∂

∂y

 ⇔ (x, y) = (x ′′, y ′′)
(
Uxx Uxy

Uyx Uyy

)
. (3.15)

This leads to the following alternative definition ofHm,n(U ; x, y):

Hm,n(U ; x, y) = (−1)m+n exp
(
x2 + y2

) (
Uxx

∂

∂x
+Uxy

∂

∂y

)m
×
(
Uyx

∂

∂x
+Uyy

∂

∂y

)n
exp

(−x2 − y2
)

=
{
Uxx

(
2x − ∂

∂x

)
+Uxy

(
2y − ∂

∂y

)}m
×
{
Uyx

(
2x − ∂

∂x

)
+Uyy

(
2y − ∂

∂y

)}n
1. (3.16)

By using (2.11) with the substitutionsx1 → 2x − ∂/∂x, x2 → 2y − ∂/∂y, the last relation
leads to the representation (3.7) of the Hermite 2D polynomials. We can also express(x, y) in
(3.14) by(x ′′, y ′′) according to (3.15) and come to another form of the definition of Hermite
2D polynomials. However, we find that it does not lead to a new explicit representation not
considered up to now and, therefore, we do not write it down.

In this section, we have given two equivalent definitions (3.4) and (3.16) of the Hermite
2D polynomials. From the first definition (3.4), we have derived three different explicit
representations of the Hermite 2D polynomials in (3.7), (3.11) and (3.13), where the last
two possess a relationship to each other. From the second definition (3.16), we could not
derive new explicit representations in comparison to the first but it is necessary to know the
structure of all operations which lead to Hermite 2D polynomials and, in this sense, it is as
important as the first. The equivalences in the definitions of Hermite 2D polynomials by (3.4)
and (3.16) cannot be continued to an operator level. If we considerHm,n(U ; x, y) in (3.16) as
an operator which does not act on the function 1 as written but on the functionsxkyl then for
k 6= 0 or l 6= 0 it is no longer equivalent to (3.4) considered as an operator.
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4. Definition of Laguerre 2D polynomials

In analogy to the introduction of Hermite 2D polynomials in the preceding section, in this
section we define Laguerre 2D polynomials by means of an arbitrary 2D matrixU as a
parameter. Our aim is a definition for which the special Laguerre 2D polynomialsLm,n(z, z

∗)
introduced in [3] appear as a special case of the 2D unit matrixU = I which means

Lm,n(I ; z, z∗) ≡ Lm,n(z, z∗)

= exp

(
− ∂2

∂z∂z∗

)
zmz∗ n

= (−1)m+n exp
(
zz∗
) ∂m+n

∂z∗m∂zn
exp

(−zz∗)
=
{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)! z
m−j z∗ n−j . (4.1)

In most (but not all possible) applications, the independent variables are a pair of complex
conjugated variables which we have denoted by(z, z∗). In a corresponding way, we now
denote the components of the transformation matrixU according to(
z′

z′ ∗

)
=
(
Uzz Uzz∗

Uz∗z Uz∗z∗

)(
z

z∗

)
⇔

(
∂

∂z
,
∂

∂z∗

)
=
(
∂

∂z′
,
∂

∂z′ ∗

)(
Uzz Uzz∗

Uz∗z Uz∗z∗

)
.

(4.2)

In analogy to (3.4), we now define the Laguerre 2D polynomials in the following way:

Lm,n(U ; z, z∗) ≡ exp

(
− ∂2

∂z∂z∗

)
z′mz′∗ n (4.3)

that yields with(z′, z′ ∗) expressed by(z, z∗) according to (4.2)

Lm,n(U ; z, z∗) = exp

(
− ∂2

∂z∂z∗

) (
Uzzz +Uzz∗z

∗)m (Uz∗zz +Uz∗z∗z
∗)n . (4.4)

If we takez′mz′∗ n from (2.11) in a correspondingly rewritten form and if we apply to this the
definition (4.1) of the special Laguerre 2D polynomialsLm,n(z, z∗), we arrive in analogy to
(3.7) at the representation

Lm,n(U ; z, z∗) =
(√
|U |

)m+n m+n∑
j=0

(
Uzz∗√|U |

)m−j (
Uz∗z∗√|U |

)n−j

×P (m−j,n−j)j

(
1 + 2

Uzz∗Uz∗z

|U |
)
Lj,m+n−j (z, z∗). (4.5)

From this first basic representation of the Laguerre 2D polynomials, we find the relations

Lm,n(λU ; z, z∗) = λm+nLm,n(U ; z, z∗)
(
Lm,n(U ; z, z∗)

)∗ = Lm,n(U ∗; z∗, z)
Lm,n(−U ; z, z∗) = (−1)m+nLm,n(U ; z, z∗) = Lm,n(U ;−z,−z∗)

(4.6)

whereU ∗ denotes the complex conjugate matrix toU . The last relation shows that the Laguerre
2D polynomials possess the parity(−1)m+n. Furthermore, one finds

Lm,n(U ; z, z∗) =
(√
|U |

)m+n
Lm,n

(
U ′; z, z∗) U ′ ≡ U√|U | |U ′| = 1. (4.7)
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Similarly to the case of Hermite 2D polynomials, the essential information on the Laguerre
polynomials is already contained in their definition for unimodular matrices.

A second and a related third basic representation can be obtained if we represent in (4.3) the
differential operators in the exponent of the convolution operator by the transformed differential
operators with a prime, according to the representation

Lm,n(U ; z, z∗) = exp

{
−
(
UzzUzz∗

∂2

∂z′ 2
+Uz∗zUz∗z∗

∂2

∂z′ ∗2

+ (UzzUz∗z∗ +Uzz∗Uz∗z)
∂2

∂z′∂z′ ∗

)}
z′mz′∗ n. (4.8)

If we first accomplish the part of the operations with mixed differentiation operators in the
exponent and then the other two parts leading to Hermite polynomials in application to power
functions, we obtain in analogy to (3.11),

Lm,n(U ; z, z∗) =
(√
UzzUzz∗

)m (√
Uz∗zUz∗z∗

)n
×
{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)!
(
UzzUz∗z∗ +Uzz∗Uz∗z√
UzzUzz∗Uz∗zUz∗z∗

)j
×Hm−j

(
Uzzz +Uzz∗z∗

2
√
UzzUzz∗

)
Hn−j

(
Uz∗zz +Uz∗z∗z∗

2
√
Uz∗zUz∗z∗

)
. (4.9)

If we first accomplish the operations with squared partial derivatives in the exponent in (4.8)
and then the operation with mixed derivatives leading to special Laguerre 2D polynomials, we
obtain the representation

Lm,n(U ; z, z∗) =
(√
UzzUz∗z∗ +Uzz∗Uz∗z

)m+n

×
[m/2]∑
k=0

[n/2]∑
l=0

(−1)k+lm!n!

k!(m− 2k)!l!(n− 2l)!

(UzzUzz∗)
k (Uz∗zUz∗z∗)

l

(UzzUz∗z∗ +Uzz∗Uz∗z)
k+l

×Lm−2k,n−2l

(
Uzzz +Uzz∗z∗√

UzzUz∗z∗ +Uzz∗Uz∗z
,

Uz∗zz +Uz∗z∗z∗√
UzzUz∗z∗ +Uzz∗Uz∗z

)
. (4.10)

Thus we have obtained three basic representations for the Laguerre 2D polynomials given in
(4.5), (4.9) and (4.10). The last representation, although less successful since it contains a
double sum in comparison to simple sums of the others, exhibits the close relationship of the
Laguerre 2D polynomialsLm,n(U ; z, z∗) to the special Laguerre 2D polynomialsLm,n(z, z∗).

Similarly to the case of Hermite 2D polynomials, there exists a second equivalent definition
of the Laguerre 2D polynomials which generalizes the last given definition ofLm,n(z, z

∗) in
(4.1). To obtain this definition, one can start from the explicit representation (4.5) of the
Laguerre 2D polynomials and can substitute the special Laguerre 2D polynomials according
to the last definition in (4.1). This leads in analogy to (3.15) to the following equivalent
definition:

Lm,n(U ; z, z∗) = (−1)m+n exp
(
zz∗
) ∂m+n

∂z′′∗m∂z′′ n
exp

(−zz∗) (4.11)

corresponding to the transformations
∂

∂z′′ ∗

∂

∂z′′

 =
(
Uzz Uzz∗

Uz∗z Uz∗z∗

)
∂

∂z∗

∂

∂z

 ⇔ (z∗, z) = (z′′ ∗, z′′)
(
Uzz Uzz∗

Uz∗z Uz∗z∗

)
.
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(4.12)

Here the transformation matrixU is connected with the transformation of the row vectors
(z∗, z) with reversed order of the components in comparison to (4.2). That this is correct can
be seen if one writes (4.11) in the following more detailed form:

Lm,n(U ; z, z∗) = (−1)m+n exp
(
zz∗
) (
Uzz

∂

∂z∗
+Uzz∗

∂

∂z

)m
×
(
Uz∗z

∂

∂z∗
+Uz∗z∗

∂

∂z

)n
exp

(−zz∗)
=
{
Uzz

(
z− ∂

∂z∗

)
+Uzz∗

(
z∗ − ∂

∂z

)}m
×
{
Uz∗z

(
z− ∂

∂z∗

)
+Uz∗z∗

(
z∗ − ∂

∂z

)}n
1. (4.13)

The connection of the matrixU with (z, z∗) appears here again in the ‘right’ order.
In analogy to the Hermite 2D polynomials, we have two equivalent basic definitions of

the Laguerre 2D polynomials given in (4.4) and (4.13) leading to three essentially different
explicit representations given in (4.5), (4.9) and (4.10).

5. Hermite and Laguerre 2D functions and their orthonormalization

Besides the Hermite 2D polynomialsHm,n(U ; x, y), we introduce Hermite 2D functions
hm,n(U ; x, y) in the following way:

hm,n(U ; x, y) ≡ 1√
π

exp
(− 1

2(x
2 + y2)

) Hm,n(U ; x, y)√
2m+nm!n!

. (5.1)

The main purpose of the introduction of the Hermite 2D functionshm,n(U ; x, y) in the above
form is their orthonormalization and completeness which we derive below.

The relations (3.8) and (3.9) can be continued to the Hermite 2D functions by the formal
substitutionH → h. This shows thathm,n(U ; x, y) is essentially defined already by the
corresponding unimodular matricesU ′ ≡ U/√|U |. The following explicit representation:

hm,n(U ; x, y) =
(√|U | )m+n

√
m!n!

m+n∑
j=0

√
j !(m + n− j)!

(
Uxy√|U |

)m−j (
Uyy√|U |

)n−j

×P (m−j,n−j)j

(
1 + 2

UxyUyx

|U |
)
hj (x)hm+n−j (y) (5.2)

is obtained from (5.1) by using (3.7), wherehn(x) are Hermite functions defined by [2]

hn(x) ≡ 1

π1/4
exp

(− 1
2(x

2)
) Hn(x)√

2nn!

∫ +∞

−∞
dx hm(x)hn(x) = δm,n. (5.3)

From the representation (5.2) it becomes obvious that the Hermite 2D functions obey the
eigenvalue equation for a degenerate 2D harmonic oscillator to the eigenvaluem + n + 1 since
the functionshj (x)hm+n−j (y) for arbitraryj = 0, 1, . . . , m + n obey such an equation (see
[2]). Thus we have{
x2 + y2

2
− 1

2

(
∂2

∂x2
+
∂2

∂y2

)}
hm,n(U ; x, y) = (m + n + 1)hm,n(U ; x, y). (5.4)
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For fixedU , the eigenvaluem + n + 1 is (m + n + 1)-fold degenerate since allhm,n(U ; x, y)
with given summ + n possess the same eigenvalue to the operator of this equation. To
discriminate betweenhm,n(U ; x, y) with equal summ + n but different(m, n), we need a
second independent operator to whichhm,n(U ; x, y) are eigensolutions. We do not treat this
here with the consequence that we cannot derive the orthogonality relations alone from this
eigenvalue equation, but instead of this we find this directly from the explicit representation.
However, from the eigenvalue equation (5.4), one can see the following. The eigenvalues of
the operator of this equation do not depend on the matrixU . Therefore, between the two sets
of (m + n + 1) functionshm,n(U ; x, y) andhk,l(V ; x, y) with fixed summ + n = k + l but
arbitrary matricesU andV have to exist transformation relations, whereashm,n(U ; x, y) and
hk,l(V ; x, y) with m + n 6= k + l have to be orthogonal. The transformation relations between
hm,n(U ; x, y) and the special sethj,m+n−j (I ; x, y), (j = 0, 1, . . . , m + n) can be taken from
(3.7) explicitly in connection with (5.1).

The derivation of the orthonormalization can be made for simplicity first for unimodular
matrices and then it can be extended in an easy way to the general case. We consider for
this purpose the following integral over the product of two Hermite 2D functions to arbitrary
unimodular matricesU ′ andV ′ and use the orthonormality of the usual Hermite functions
hn(x) as follows (|U ′| = |V ′| = 1):∫

dx ∧ dy hk,l(V
′; x, y)hm,n(U ′; x, y) = 1

π
√

2k+l+m+nk!l!m!n!

×
k+l∑
i=0

V ′k−ixy V ′l−iyy P
(k−i,l−i)
i

(
1 + 2V ′xyV

′
yx

)
×

m+n∑
j=0

U ′m−jxy U ′n−jyy P
(m−j,n−j)
j

(
1 + 2U ′xyU

′
yx

)
×
∫ +∞

−∞
dx exp

(−x2
)
Hi(x)Hj (x)

∫ +∞

−∞
dy exp

(−y2
)
Hk+l−i (y)Hm+n−j (y)

= δk+l,m+n
1√

k!l!m!n!

m+n∑
j=0

j !(m + n− j)!U ′m−jxy U ′n−jyy V ′k−jxy V ′m+n−k−j
yy

×P (m−j,n−j)j

(
1 + 2U ′xyU

′
yx

)
P
(k−j,m+n−k−j)
j

(
1 + 2V ′xyV

′
yx

)
. (5.5)

By using relation (A.4) of appendix A, one can write (5.5) in the form∫
dx ∧ dy hk,l(V

′; x, y)hm,n(U ′; x, y)

= δk+l,m+n

√
k!l!

m!n!
W ′m−kxy W ′n−kyy P

(m−k,n−k)
k (1 + 2W ′xyW

′
yx) (5.6)

where(W ′xx,W
′
xy,W

′
yx,W

′
yy) are the components of the unimodular product matrixW ′ =

U ′V ′. If V ′ = U ′−1 or W ′ = U ′V ′ = I is the unit matrix and thereforeW ′xx = W ′yy =
1,W ′xy = W ′yx = 0, one obtains with the special value of the Jacobi polynomialsP

(α,β)

j (u) for
argumentu = 1 given in (2.3)∫

dx ∧ dy hk,l(U
′−1; x, y)hm,n(U ′; x, y) = δk,mδl,n. (5.7)

This basic orthonormality relation for Hermite 2D functions is not only true for unimodular
matricesU ′ for which it was derived but also for general matricesU as we will now show.
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For generalU,V andW = UV , one has to add in the right-hand side the factor(√|U | )m+n (√|V | )k+l and, due to the presence of the Kronecker symbol on this side,
relation (5.6) generalizes to∫

dx ∧ dy hk,l(V ; x, y)hm,n(U ; x, y)

= δk+l,m+n

√
k!l!

m!n!
(|W |)k Wm−k

xy Wn−k
yy P

(m−k,n−k)
k

(
1 + 2

WxyWyx

|W |
)
. (5.8)

By settingV = U−1 and thereforeW = UV = I in this relation or directly by generalization
of (5.7), one finds∫

dx ∧ dy hk,l(U
−1; x, y)hm,n(U ; x, y) = δk,mδl,n. (5.9)

This means that the basic orthonormality relations (5.7) remain unchanged by the transition
from unimodular to general 2D matricesU .

The sets of functionshm,n(U ; x, y) for arbitraryU form complete sets of functions of
two variables(x, y) since they can be obtained by continuous and reversible transformations
from the set of special Hermite 2D functionshm,n(I ; x, y) = hm(x)hn(y) from which their
completeness is known (proof, for example, by the Mehler formula, see [3]). Therefore, it is
not necessary to prove anew the fact of completeness and together with the orthonormality
(5.9), we can give immediately the rigorous formulation of the completeness relation

∞∑
m=0

∞∑
n=0

hm,n(U ; x, y)hm,n(U−1; x ′, y ′) = δ(x − x ′)δ(y − y ′). (5.10)

This leads to the following possible expansions of functionsf (x, y):

f (x, y) =
∞∑
m=0

∞∑
n=0

cm,nhm,n(U ; x, y) cm,n =
∫

dx ∧ dy hm,n(U
−1; x, y)f (x, y)

(5.11)

where the integration goes over the whole(x, y)-plane. The 2D matrixU is herein a free
parameter which can be chosen in an appropriate way. Exactly speaking, one has to determine
the spaces of functionsf (x, y) for which all coefficientscm,n remain finite and lead to
convergent expansions but we will not do so. We only mention that these spaces are isomorphic
to a realization of the Fock space for a two-mode system and are therefore Hilbert spaces but
for some problems, certainly, one can use extensions of these spaces to rigged Hilbert spaces
and can use the expansions (5.11) in the sense of weak convergence of generalized functions.

For the purpose of orthonormalization of the Laguerre 2D polynomialsLm,n(U ; z, z∗),
we now define Laguerre 2D functionslm,n(U ; z, z∗) by

lm,n(U ; z, z∗) ≡ 1√
π

exp
(− 1

2zz
∗) Lm,n(U ; z, z∗)√

m!n!
. (5.12)

The discussion is analogous in many regards to the discussion for Hermite 2D functions and
we do not repeat it completely. The special case of the unit matrixU = I leads to the special
Laguerre 2D functionslm,n(z, z∗) introduced and discussed in [2]

lm,n(z, z
∗) = 1√

π
exp

(− 1
2zz
∗) 1√

m!n!

{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)! z
m−j z∗ n−j . (5.13)
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They satisfy the following orthonormality relations [2] (see also appendix B; note that the
2-form (i/2) dz ∧ dz∗ = dx ∧ dy is the area element of the complex plane):∫

1
2i dz ∧ dz∗ lk,l(z∗, z)lm,n(z, z∗) = δk,mδl,n. (5.14)

By using these special Laguerre 2D functions, one can represent (5.11) in the following explicit
form in analogy to (5.2) for Hermite functions:

lm,n(U ; z, z∗) =
(√|U | )m+n

√
m!n!

m+n∑
j=0

√
j !(m + n− j)!

(
Uzz∗√|U |

)m−j (
Uz∗z∗√|U |

)n−j

×P (m−j,n−j)j

(
1 + 2

Uzz∗Uz∗z

|U |
)
lj,m+n−j (z, z∗). (5.15)

Since for arbitraryj = 0, 1, . . . , m + n, lj,m+n−j (z, z∗) obey the eigenvalue equation for
a degenerate 2D harmonic oscillator to the eigenvaluem + n + 1 (see [2]), the functions
lm,n(U ; z, z∗) obey the same eigenvalue equation which is(

zz∗

2
− 2

∂2

∂z∂z∗

)
lm,n(U ; z, z∗) = (m + n + 1)lm,n(U ; z, z∗). (5.16)

This equation is one reason for the introduction of this set of functions. The other reason is
thatlm,n(U ; z, z∗) obey orthonormality relations which we now derive.

The derivation of orthonormality relations is completely analogous to (5.5) and we make
use of this. Therefore, we obtain in analogy to (5.8)∫

1
2i dz ∧ dz∗ lk,l(V ; z∗, z)lm,n(U ; z, z∗)

= δk+l,m+n

√
k!l!

m!n!
(|W |)k Wm−k

zz∗ W
n−k
z∗z∗ P

(m−k,n−k)
k

(
1 + 2

Wzz∗Wz∗z

|W |
)

(5.17)

from which in the special caseV = U−1 and thereforeW = UV = I it follows∫
1
2i dz ∧ dz∗ lk,l(U−1; z∗, z)lm,n(U ; z, z∗) = δk,mδl,n. (5.18)

The completeness relation in analogy to (5.10) is

∞∑
m=0

∞∑
n=0

lm,n(U ; z, z∗)lm,n(U−1; z′∗, z′) = δ(z− z′, z∗ − z′∗) (5.19)

and the expansion of an arbitrary functionf (z, z∗) reads

f (z, z∗) =
∞∑
m=0

∞∑
n=0

cm,nlm,n(U ; z, z∗) cm,n =
∫

1
2i dz ∧ dz∗lm,n(U−1; z∗, z)f (z, z∗).

(5.20)

One can use (4.6) to represent (5.17)–(5.20) in slightly different forms.
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6. Degenerate case of a vanishing determinant

We now consider the degenerate case of a vanishing determinant ofU in the Hermite 2D and
Laguerre 2D polynomials. In this case the corresponding polynomials simplify considerably.
We begin with the Hermite 2D polynomials.

A vanishing determinant ofU

|U | = UxxUyy − UxyUyx = 0 (6.1)

is equivalent to the linear dependence of the two lines of the matrixU and leads to a linear
dependence ofx ′ andy ′ in (3.2) according to

x ′ = Uxxx +Uxyy = Uxx

Uyx
y ′ y ′ = Uyxx +Uyyy = Uyx

Uxx
x ′. (6.2)

The definition (3.4) of the Hermite 2D polynomials can now be written as follows with a result
which again can be taken from (3.4):

(Hm,n(U ; x, y))|U |=0 =
(
Uyx

Uxx

)n
exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}
(2(Uxxx +Uyxy))

m+n

=
(
Uyx

Uxx

)n
Hm+n,0(U ; x, y). (6.3)

A similar second variant relates the result toH0,m+n(U ; x, y) instead ofHm+n,0(U ; x, y). If
we take these special Hermite 2D polynomials in their explicit form from (3.11), we obtain

(Hm,n(U ; x, y))|U |=0 =
(
Uyx

Uxx

)n (√
U2
xx +U2

xy

)m+n
Hm+n

Uxxx +Uxyy√
U2
xx +U2

xy



=
(
Uxy

Uyy

)m (√
U2
yx +U2

yy

)m+n
Hm+n

Uyxx +Uyyy√
U2
yx +U2

yy

. (6.4)

Hence in the degenerate case, the Hermite 2D polynomials lead to usual Hermite polynomials
of the sum of the indices and with arguments in the form of linear combinations ofx andy
and with some factors in front of the polynomials.

If we first apply the binomial formula in the representation in (6.3) and if we then apply
the operator to the result, we obtain the following alternative representations:

(Hm,n(U ; x, y))|U |=0 =
(
Uyx

Uxx

)n m+n∑
j=0

(m + n)!

j !(m + n− j)!U
j
xxU

m+n−j
xy Hj (x)Hm+n−j (y)

=
(
Uxx

Uyx

)m m+n∑
j=0

(m + n)!

j !(m + n− j)!U
j
yxU

m+n−j
yy Hj (x)Hm+n−j (y). (6.5)

This can also be derived from (3.7) by a limiting procedure using (B.8) of appendix B. By
combining (6.4) and (6.5), we obtain an identity which is the addition theorem for the Hermite
polynomials [11, 27]. Other forms of the Hermite 2D polynomials in the degenerate case can
be taken from (3.11) and (3.13). In particular, one obtains from (3.11) (we write down only
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one of the possible two variants)

(Hm,n(U ; x, y))|U |=0 =
(
Uyx

Uxx

)n (√
U2
xx +U2

xy

)m+n {m,n}∑
j=0

(−2)jm!n!

j !(m− j)!(n− j)!

×Hm−j
Uxxx +Uxyy√

U2
xx +U2

xy

Hn−j
Uxxx +Uxyy√

U2
xx +U2

xy

. (6.6)

This representations compared with (6.4) reveals a further known identity for Hermite
polynomials [11] ((10.13), equation (36)), however, not in its simplest form. The given
different representations are important for recognizing them as the degenerate case of Hermite
2D polynomials if they happen as a result of calculation.

We now consider the vanishing of the determinant ofU in the case of the Laguerre 2D
polynomials which means

|U | = UzzUz∗z∗ − Uzz∗Uz∗z = 0. (6.7)

In analogy to (6.3), the definition (4.4) can now be written as

(Lm,n(U ; z, z∗))|U |=0 =
(
Uz∗z

Uzz

)n
exp

(
− ∂2

∂z∂z∗

) (
Uzzz +Uzz∗z

∗)m+n

=
(
Uz∗z

Uzz

)n
Lm+n,0(U ; z, z∗) (6.8)

and a similar second variant is possible. With the explicit form ofLm+n,0(U ; z, z∗) taken from
(4.9), we find the explicit form

(Lm,n(U ; z, z∗))|U |=0 =
(
Uz∗z

Uzz

)n (√
UzzUzz∗

)m+n
Hm+n

(
Uzzz +Uzz∗z∗

2
√
UzzUzz∗

)
. (6.9)

If we first apply in (6.8) the binomial formula and then the operator to the result, we obtain the
following representation by special Laguerre 2D polynomials:

(Lm,n(U ; z, z∗))|U |=0 =
(
Uz∗z

Uzz

)n m+n∑
j=0

(m + n)!

j !(m + n− j)!U
j
zzU

m+n−j
zz∗ Lj,m+n−j (z, z∗). (6.10)

Furthermore, the following representation can be obtained from (4.9):

(Lm,n(U ; z, z∗))|U |=0 =
(
Uz∗z

Uzz

)n (√
UzzUzz∗

)m+n {m,n}∑
j=0

(−2)jm!n!

j !(m− j)!(n− j)!

×Hm−j
(
Uzzz +Uzz∗z∗

2
√
UzzUzz∗

)
Hn−j

(
Uzzz +Uzz∗z∗

2
√
UzzUzz∗

)
. (6.11)

In (6.9), (6.10) and (6.11), we did not write down the second possible variant. By comparison
of the right-hand sides of relations (6.9)–(6.11), we obtain three identities from which one
identity for Hermite polynomials is known [11] (again (10.13), equation (36)).
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7. Relations of Hermite 2D to Laguerre 2D polynomials

In this section, we establish the relations between Hermite 2D and Laguerre 2D polynomials.
We start from the relations between the two pairs of variables(x, y) and(z, z∗)which we write
in the following matrix form:(
z

z∗

)
= (1− i)Z

(
x

y

)
Z ≡

(
1
2(1 + i) − 1

2(1− i)
1
2(1 + i) 1

2(1− i)

)
|Z| = 1(

x

y

)
= 1

2(1 + i) Z−1

(
z

z∗

)
Z−1 =

(
1
2(1− i) 1

2(1− i)

− 1
2(1 + i) 1

2(1 + i)

)
= Z†.

(7.1)

We have split factors in these transformations in such a way that the remaining transformation
matrixZ becomes a unimodular one (|Z| = 1) and, in addition, it became a unitary matrix
(Z−1 = Z†). For the product ofZ with the transposed matrixZT, we find

ZZT = iσ1 ⇔ (1− i)2ZZT = 2σ1 σ1 ≡
(

0 1

1 0

)
(7.2)

whereσ1 is the first of the three Pauli spin matrices. We use this relation later in the derivation
of the generating functions for the Laguerre 2D polynomials.

The transformations fromLm,n(U ; z, z∗) toHm,n(V ; x, y) and vice versa have to take into
account the additional transformations of the variables(x, y) into (z, z∗) given in (7.1) before
defining the corresponding polynomials and one obtains

Lm,n(U ; x + iy, x − iy) = ( 1
2(1− i)

)m+n
Hm,n (UZ; x, y)

Hm,n(U ; x, y) = (1 + i)m+n Lm,n
(
UZ−1; x + iy, x − iy

)
.

(7.3)

The corresponding relations between the Hermite and Laguerre 2D functions are

lm,n(U ; x + iy, x − iy) =
(

1− i√
2

)m+n

hm,n (UZ; x, y) 1− i√
2
= exp

(− 1
4iπ

)
hm,n(U ; x, y) =

(
1 + i√

2

)m+n

lm,n
(
UZ−1; x + iy, x − iy

) 1 + i√
2
= exp

(
1
4iπ

)
.

(7.4)

We see that the Hermite and Laguerre 2D polynomials as well as 2D functions are closely
related by changing the matrixU intoUZ orUZ−1, correspondingly. Nevertheless, it would
be unfavourable to renounce the definition of one kind of these polynomials or functions
because the Hermite 2D polynomials and functions are more suited for the representation by
real variables and the Laguerre 2D polynomials and functions to the representation by complex
variables. In relations (7.4) for the 2D functions we have phase factors which are(m + n)th
powers of exp(±iπ/4) and which could be included in the definition of the Laguerre 2D
functions that, however, seems to be inconvenient. In relations (7.3) for the polynomials we
have, additionally, positive or negative(m + n)th powers of

√
2, but it is also unfavourable to

include them in the definition of the Laguerre 2D polynomials because then many relations for
these polynomials take on an inappropriately complicated form.



1620 A Wünsche

The special caseU = I in (7.3) and (7.4) provides the relations between special Hermite
and Laguerre 2D polynomials or functions, for example, in connection with (3.7) and (4.5)

Lm,n(x + iy, x − iy) = ( 1
2(1− i)

)m+n
Hm,n (Z; x, y)

= (−1)n
(

1
2i
)m+n

m+n∑
j=0

(−i2)jP (m−j,n−j)j (0)Hj (x)Hm+n−j (y)

Hm(x)Hn(y) = (1 + i)m+n Lm,n
(
Z−1; x + iy, x − iy

)
= in

m+n∑
j=0

2jP (m−j,n−j)j (0)Lj,m+n−j (x + iy, x − iy).

(7.5)

These relations are already given in [2, 3] in a slightly different form related by the
transformation relations (2.4) of the Jacobi polynomials with (7.5). We mention that the
argument of the Jacobi polynomials in the special relations (7.5) is equal to zero.

8. Generating functions of Hermite and Laguerre 2D polynomials

We now derive the simplest generating functions for the Hermite and Laguerre 2D polynomials.
This enables us to establish the relation to the two-variable Hermite polynomials.

The simplest generating function is connected with the following sum over Hermite 2D
polynomials with two parameters(s, t) which by using the definition (3.4) yields
∞∑
m=0

∞∑
n=0

smtn

m!n!
Hm,n(U ; x, y) = exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}

×
∞∑
m=0

∞∑
n=0

1

m!n!

(
2s(Uxxx +Uxyy)

)m(
2t (Uyxx +Uyyy)

)n
= exp

{
−1

4

(
∂2

∂x2
+
∂2

∂y2

)}
exp

{
2(sUxx + tUyx)x + 2(sUxy + tUyy)y

}
= exp

{
2(sUxx + tUyx)x + 2(sUxy + tUyy)y

−(sUxx + tUyx)
2 − (sUxy + tUyy)

2
}
. (8.1)

The result of the application of the exponential operator in (8.1) to the exponential function can
be obtained by Taylor series expansion of this operator. This result possesses an interesting
algebraic structure which is clarified by the following relations:

(sUss + tUyx)
2 + (sUxy + tUyy)

2

= (s, t)
(
Uxx Uxy

Uyx Uyy

)(
Uxx Uyx

Uxy Uyy

)(
s

t

)
= s̄UUT s̄

(sUxx + tUyx)x + (sUxy + tUyy)y = (s, t)
(
Uxx Uxy

Uyx Uyy

)(
x

y

)
= s̄U x̄

(8.2)

with the following abbreviations for 2D vectors̄x ands̄:

x̄ ≡ (x, y) s̄ ≡ (s, t) or x̄ ≡
(
x

y

)
s̄ ≡

(
s

t

)
. (8.3)
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We do not distinguish by a symbol for transposition between the row and corresponding column
vectors because their meaning becomes clear from their position in the bilinear or quadratic
forms where they are involved. The matrixUT is the transposed matrix to the matrixU . With
this notation, we can write the generating function (8.1) in the following form:

∞∑
m=0

∞∑
n=0

smtn

m!n!
Hm,n(U ; x, y) = exp

(
2s̄U x̄ − s̄UUT s̄

)
. (8.4)

This is in great analogy to the generating functions for the usual Hermite polynomials if we
denotes̄U = UT s̄ ≡ s in the one-dimensional case.

The simplest generating function for the Laguerre 2D polynomials can be obtained
from the generating function (8.4) for Hermite 2D polynomials by simple substitutions via
relations (7.1)–(7.3) according to
∞∑
m=0

∞∑
n=0

smtn

m!n!
Lm,n(U ; z, z∗) = exp

{
2
(

1
2(1− i)

)
s̄UZx̄ − ( 1

2(1− i)
)2
s̄UZZTUT s̄

}
= exp

(
s̄U z̄− 1

2 s̄Uσ1U
T s̄
)

(8.5)

with the abbreviations in analogy to (8.3)

z̄ ≡ (z, z∗) s̄ ≡ (s, t) or z̄ ≡
(
z

z∗

)
s̄ ≡

(
s

t

)
(8.6)

and withσ1 as the first of the Pauli spin matrices. The generating function (8.5) can also be
derived in analogy to (8.1) by using the definition (4.4) of the Laguerre 2D polynomials.

The generating function (8.4) for the Hermite 2D polynomials suggests the following
ν-dimensional generalization to HermiteνD polynomials in the rank of a definition

∞∑
n1=0

. . .

∞∑
nν=0

s
n1
1 · · · snνν
n1! · · · nν !Hn1,...,nν (U ; x1, . . . , xν) = exp

(
2sUx − sUUTs

)
(8.7)

with the abbreviations

x ≡ (x1, . . . , xν) s ≡ (s1, . . . , sν) U =


U11 . . . U1ν

...
...

Uν1 . . . Uνν

 (8.8)

and with the corresponding transposed vectors and matrixUT. The direct definitions (3.4) and
(3.5) can be easily generalized in agreement with the generating function (8.7) but there arise
new problems to obtain explicit representations in analogy to the 2D case. It is obvious that
(8.7) is the most natural generalization of the Hermite 2D to HermiteνD polynomials but,
contrary to the 2D case, applications are rarely found forν > 3 up to now. We mention that in
the 1D case we obtainHn(U ; x) = UnHn(x) with scalarU and the introduction ofHn(U ; x)
becomes superfluous.

9. Square roots of symmetric 2× 2 matrices

In preparation to establish the relation of Hermite 2D polynomials to usual two-variable
Hermite polynomials, we consider a specific problem which is in a certain sense the problem
to find the square roots of a symmetric 2D matrixA.
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We first define a symmetric 2D matrixA by means of an arbitrary 2D matrixU as follows:

A ≡ UUT =
(

U2
xx +U2

xy UxxUyx +UxyUyy

UxxUyx +UxyUyy U2
yx +U2

yy

)
=
(
Axx Axy

Axy Ayy

)
A = AT AxxAyy − A2

xy = |A| = |U ||UT| = |U |2 = (UxxUyy − UxyUyx)2.
(9.1)

For a given arbitrary matrixU , the symmetric matrixA is uniquely determined. IfU is
unimodular thenA is also unimodular. However, for given symmetric matrixA = AT, a
matrixU defined byUUT = A is not uniquely determined. The determination ofU fromA

is the determination of the square roots ofA in the sense that a quadratic forms̄As̄ = s̄UUT s̄

is represented as the scalar product of a row vectors̄U with its corresponding column vector
UT s̄ for arbitrary vectors̄s. The considered ‘square root problem’ is not identical to another
possible ‘square root problem’ which is of the formU2 = A. We, however, need the solution
of the ‘square root problem’UUT = A. This solution contains a free parameter denoted byλ

and can be written according to (many other parametrizations are possible)

U =
(
Uxx Uxy

Uyx Uyy

)
= 1√

λ2Axx + 2λ
√|A| +Ayy

(
λAxx +

√|A| Axy

λAxy Ayy + λ
√|A|

)
(9.2)

where the sign of
√|A| can be chosen arbitrarily but it has to be the same in all parts of this

solution. One can check by insertion into (9.1) that this is a solution but its straightforward
derivation from (9.1) showing in addition that it is the general solution is more difficult and
we do not write it down. Whereas the matrixA = AT contains, in general, three complex
components, an arbitrary matrixU contains, in general, four complex components and this
makes it understandable that there appears a free parameterλ when determiningU from
UUT = A. By choosingλ = 1, one obtains from (9.2) a symmetric matrixU = UT for U
and by choosingλ = 0 orλ = ∞ a right triangular or a left triangular matrix forU .

If A possesses diagonal formAxx = a,Ayy = b,Axy = 0, then by the substitutions
Axy ≡ ε andλ ≡ −√b/a + (µε)/(

√
1− µ2 a), one finds from (9.2) in the limiting case

ε→ 0

A =
(
a 0

0 b

)
⇔ U =

(
µ
√
a

√
1− µ2

√
a

−
√

1− µ2
√
b µ

√
b

)
(9.3)

with an arbitrary parameterµ. Forµ = 1, one obtains from (9.3) a diagonal matrixU . Another
special case is the following correspondence for square roots of the spin matrixσ1:

A = c
(

0 i

i 0

)
= icσ1 ⇔ U = 1√

2λ
√
c2

( √
c2 ic

iλc λ
√
c2

)
(9.4)

where
√
c2 means that both signs±c are admissible if it is only the same sign in the different

parts of the expression. Forc = 1 and by choosingλ = −i, one obtainsU = Z (see (7.1)).

10. Relations of Hermite 2D polynomials to two-variable Hermite polynomials

We distinguished the Hermite 2D polynomials introduced in section 3 from the usual two-
variable Hermite polynomials by name and notation since they are not identical to each other.
We now establish the corresponding relations. This can be done most easily by comparing the
generating functions.
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There are two kinds of two-variable Hermite polynomialsHR
m,n(x, y) andGR

m,n(x, y)

which are usually defined with the help of a symmetric 2× 2-matrixR by the following
generating function for the first kind (e.g. [11, 18, 22]):

exp
(
s̄Rx̄ ′ − 1

2 s̄Rs̄
) = ∞∑

m=0

∞∑
n=0

smtn

m!n!
HR
m,n(x

′, y ′) R = RT (10.1)

and by the following generating function for the second kind [11]:

exp
(
s̄x̄ ′ − 1

2 s̄R
−1s̄

) = ∞∑
m=0

∞∑
n=0

smtn

m!n!
GR
m,n(x

′, y ′) R = RT. (10.2)

The vector abbreviations are the same as in (8.3) but here we have primed the independent
variables because they cannot be identified with the independent variables in the Hermite
2D polynomials without transformations. In most cases, only the two-variable Hermite
polynomialsHR

m,n(x, y) of the first kind are used. The second kind is defined for the purpose of
the orthonormalization of the first kind in the form of biorthogonality relations. Many special
cases and representations ofHR

m,n(x, y) are considered in [13–18, 22].
We now compare these generating functions with the generating function (8.4) for the

Hermite 2D polynomials and find from (10.1) the correspondences

Rx̄ ′ = 2Ux̄ R = 2UUT. (10.3)

From this we find the following relations:

Hm,n(U ; x, y) = H 2UUT

m,n

(
xUyy − yUyx
|U | ,

−xUxy + yUyy
|U |

)
HR
m,n(x, y) = Hm,n(U ; xUxx + yUyx, xUxy + yUyy) R = 2UUT.

(10.4)

This means the following. The Hermite 2D polynomialHm,n(U ; x, y) can be easily, but not
simply, expressed for a given matrixU by a two-variable Hermite polynomialHR

m,n(x
′, y ′).

However, to expressHR
m,n(x, y) for given matrixR by a certainHm,n(U ; x ′, y ′) requires the

solution of the ‘square root problem’UUT = R/2 ≡ A for the determination of a possible
matrix U as dealt with in the preceding section. Therefore, starting from the two-variable
Hermite polynomialsHR

m,n(x, y), it is a highly non-trivial problem to change the definition in
such a way that it provides a set of orthonormalized polynomials similarly to (5.9).

From (10.2) together with (8.4), we find the correspondences

x̄ ′ = 2Ux̄ R−1 = 2UUT. (10.5)

This leads to

Hm,n(U ; x, y) = G
1
2 (UU

T)−1

m,n

(
2(Uxxx +Uxyy), 2(Uyxx +Uyyy)

)
GR
m,n(x, y) = Hm,n

(
U ; Uyyx − Uxyy

2|U | ,
−Uyxx +Uxxy

2|U |
)

R−1 = 2UUT.
(10.6)

Here we have to solve a ‘square root problem’ of the formUUT = R−1/2 ≡ A for the
determination ofU .

The main advantage of the Hermite 2D polynomials in comparison to the two-variable
Hermite polynomials is that they obey orthonormality and completeness relations, whereas the
two-variable Hermite polynomials need a second kind of polynomials for the formulation of
biorthonormality relations. A further advantage of the definition of the Hermite 2D polynomials
is that apart from the degenerate case of the vanishing determinant ofU it shows that a general
matrixU does not lead essentially to other polynomials than the corresponding unimodular
matricesU ′ = U/√|U | but only to their multiplication with powers of

√|U |. This is contained
in the two-variable Hermite polynomials in a very entangled form.
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11. Conclusion

With the present paper together with the preceding two papers [2, 3], we have realized in a first
approximation our programme connected with the introduction of a general set of Hermite and
Laguerre 2D polynomials and corresponding 2D functions for the degenerate 2D harmonic
oscillator. This programme can be characterized by the following scheme (generalization
from the left and from the right to the centre of the lines; transition from sets of polynomials
to orthonormalized and complete sets of functions from above to below; representation by real
variables on the left-hand side and by complex variables on the right-hand side):

Hm(x)Hn(y) ← Hm,n(U ; x, y) ⇔ Lm,n(U ; z, z∗) → Lm,n(z, z
∗)

l l l l
hm(x)hn(y) ← hm,n(U ; x, y) ⇔ lm,n(U ; z, z∗) → lm,n(z, z

∗).

(11.1)

The special Hermite and Laguerre 2D polynomials and functions are obtained from the general
ones by settingU = I , whereI is the 2D identity matrix which is then omitted in the
notation. The Hermite 2D polynomialsHm,n(U ; x, y) are not identical to the usual two-
variable Hermite polynomials and the corresponding relations to each other are discussed.
Our Hermite 2D functions (and Laguerre 2D functions too) form an orthonormalized and
complete set of 2D functions, whereas one has two different kinds of usual two-variable Hermite
functions which are biorthogonal in a dual way. Roughly speaking, our set of Hermite 2D
polynomials is obtained by using the square root of the matrix which figures in the usual two-
variable Hermite polynomials. Our programme can be briefly characterized as theSL(2, C)
unification of Hermite and Laguerre 2D polynomials. Most important for applications are
sublevels of transformations, for example, the sublevel of theSU(2) unification and sometimes
the sublevel of theSU(1, 1) unification of the considered polynomials which can be obtained
by corresponding specialization of the 2D matricesU .

Due to the rich material, we could not consider here all the problems which seem to be
interesting for the introduced Hermite 2D and Laguerre 2D polynomials and functions and
restricted ourselves to the most important ones from our point of view. These were different
explicit representations, the orthonormality relations, the simplest generating functions and
the relations to the usual two-variable Hermite polynomials. Other problems of interest which
have not yet been considered are, for example, the introduction of annihilation and creation
operators and recursion relations [35], transformation relations involving the arguments of the
polynomials, specializations of the matrixU leading to simplifications of the polynomials and
Fourier and Radon transformations of the Hermite and Laguerre 2D functions. The group
SL(2, C) ∼ Sp(2, C) contains three complex parameters and a parametrization by complex
3-vectors becomes possible which is not considered here. There are also categories of one-
and two-dimensional integrals with parameters and integral transformations which lead to
Hermite and Laguerre 2D polynomials. They can be taken as integral representations of these
polynomials on one hand and as the evaluation of interesting integrals on the other hand. Last
but not least, we expect interesting applications such as, for example, in quantum optics to
the lossless beamsplitter and to general two-mode polarization of light and, furthermore, to
the representation of ordered moments for displaced squeezed thermal states, where many
interesting results already exist in the literature in different forms. The generalization of
the Hermite 2D polynomials and functions in the representation by real variables(x, y) to
HermiteνD polynomials and functions is possible in a way which is briefly indicated at the
end of section 8. These are some of the problems arising in connection with the new definition
of Hermite and Laguerre 2D polynomials. Having now outlined the contours of the new
concept of the introduction of Hermite and Laguerre 2D polynomials, the author invites the
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reader to take part in the discussion of the many interesting properties of these polynomials
and to consider applications. Much remains to be done.
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Appendix A. A group-theoretical addition theorem for Jacobi polynomials

In this appendix, we derive a new relation for the Jacobi polynomials which results from
the composition of two non-degenerate transformationsU and V of the form (2.7) to a
new transformationW = UV . The set of these 2D linear transformations forms the group
GL(2, C). Due to (2.11), we can restrict ourselves without loss of generality to unimodular
transformationsU ′ andV ′ and therefore also toW ′ = U ′V ′ and consider the transformations(
x ′1
x ′2

)
=
(
W ′11 W ′12

W ′21 W ′22

)(
x1

x2

)
=
(
U ′11 U ′12

U ′21 U ′22

)(
V ′11 V ′12

V ′21 V ′22

)(
x1

x2

)
W ′ = U ′V ′ |U ′| = 1 |V ′| = 1 ⇒ |W ′| = 1.

(A.1)

The set of these transformations forms the groupSL(2, C) ∼ Sp(2, C) of 2D complex
unimodular or symplectic transformations. If we treat the transformation of the powers of
(x ′1, x

′
2) by using the product of matricesU ′ andV ′ then we obtain from (2.13)

x ′m1 x
′n
2 =

m+n∑
j=0

U
′m−j
12 U

′n−j
22 P

(m−j,n−j)
j

(
1 + 2U ′12U

′
21

)
×

m+n∑
k=0

V
′j−k
12 V

′m+n−j−k
22 P

(j−k,m+n−j−k)
k

(
1 + 2V ′12V

′
21

)
xk1x

m+n−k
2 . (A.2)

On the other hand, with the product matrixW ′ = U ′V ′ of the transformations, it follows

x ′m1 x
′n
2 =

m+n∑
k=0

W ′m−k12 W ′n−k22 P
(m−k,n−k)
k

(
1 + 2W ′12W

′
21

)
xk1x

m+n−k
2 . (A.3)

By comparison of the expressions in front ofxk1x
m+n−k
2 for eachk in (A.2) and (A.3), one

obtains the identities

W ′m−k12 W ′n−k22 P
(m−k,n−k)
k

(
1 + 2W ′12W

′
21

) = m+n∑
j=0

U
′m−j
12 U

′n−j
22 V

′j−k
12 V

′m+n−j−k
22

×P (m−j,n−j)j

(
1 + 2U ′12U

′
21

)
P
(j−k,m+n−j−k)
k

(
1 + 2V ′12V

′
21

)
= 1

k!(m + n− k)!
m+n∑
j=0

j !(m + n− j)!U ′m−j12 U
′n−j
22 V

′k−j
21 V

′m+n−k−j
22

×P (m−j,n−j)j

(
1 + 2U ′12U

′
21

)
P
(k−j,m+n−k−j)
j

(
1 + 2V ′12V

′
21

)
(A.4)
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where the components ofW ′ expressed by the components ofU ′ andV ′ can be taken from
(A.1). The second form can be obtained by using the first of the transformation relations
for the Jacobi polynomials given in (2.4). In this last form, both Jacobi polynomials have
the same lower indexj which is the summation index. Relation (A.4) is a kind of addition
theorem for the Jacobi polynomials. It connects Jacobi polynomials with different arguments
which are determined by a matrix product and it contains three discrete parameters(m, n) and
k = 0, . . . , m + n.

We consider the special caseW ′ = U ′V ′ = I in (A.4). In this case, one has

V ′ = U ′−1 =
(

U ′22 −U ′12

−U ′21 U ′11

)
|V ′| = |U ′|−1 = 1 (A.5)

sinceU ′ is unimodular. Due to

P
(m−k,n−k)
k (1) = m!

k!(m− k)! lim
W→I

Wm−k
12 = δm−k,0 m > k (A.6)

following from (2.3) and from the assumptionW ′ = I , one finds from (A.5) the identity

δm−k,0 =
m+n∑
j=0

(U ′11U
′
22)

n−j (−1)j−kP (m−j,n−j)j (1 + 2U ′12U
′
21)

×P (j−k,m+n−j−k)
k (1 + 2U ′12U

′
21)

= 1

m!n!

m+n∑
j=0

j !(m + n− j)! (−U ′12U
′
21)

m−j (U ′11U
′
22)

n−j

×P (m−j,n−j)j

(
1 + 2U ′12U

′
21

)
P
(k−j,m+n−k−j)
j

(
1 + 2U ′12U

′
21

)
m > k.

(A.7)

This means that in the special caseV ′ = U ′−1, one obtains from (A.4) a summation relation
over products of Jacobi polynomials with equal arguments. In particular, fork = m and by
usingU ′11U

′
22− U ′12U

′
21 = 1, one obtains from the second part of this relation

1

m!n!

m+n∑
j=0

j !(m + n− j)!(−U ′12U
′
21)

m−j (1 +U ′12U
′
21)

n−j (P (m−j,n−j)j (1 + 2U ′12U
′
21)
)2 = 1.

(A.8)

It contains two free integer parameters(m, n) and one free continuous parameterU ′12U
′
21 (or

U ′11U
′
22). I have checked this identity for different parameters by computer and did not find

any contradictions.
It is easy to generalize the relations of this appendix to arbitrary 2D matrices(U, V,W =

UV ) but it is inconvenient to write this down.

Appendix B. Proof of the orthonormalization of the special Laguerre 2D functions

An indirect proof of the orthonormalization (5.14) of the special Laguerre 2D functions relying
on known orthogonality relations for the usual (1D) Laguerre polynomials was briefly described
in [2] and a possible derivation from the obtained differential equations was announced. We will
give here a more direct proof which reveals some interesting relations for Jacobi polynomials.
This proof uses the following two identities:

1

π

∫
1
2i dz ∧ dz∗ exp(−zz∗)zkz∗ l = k!δk,l (k, l = 0, 1, . . .) (B.1)
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with an integral which is easily evaluated in polar coordinates and

{m,n}∑
j=0

(−1)j (k +m + n− j)!
j !(m− j)!(n− j)! =

(k +m)!(k + n)!

k!m!n!
≡ (k + n)!

n!
P (k,n−m)m (1). (B.2)

The identity in (B.2) is interesting for itself because it is related to a representation of the
Jacobi polynomials which happens to appear in applications but is little known. However,
before showing this let us first finish the proof of the orthonormalization (5.14) by using (B.1)
and (B.2) and, furthermore, the binomial formula.

Starting from the definition of the Laguerre 2D functions, one finds∫
1
2i dz ∧ dz∗

(
lk,l(z, z

∗)
)∗
lm,n(z, z

∗) = 1

π
√
k!l!m!n!

∫
1
2i dz ∧ dz∗ exp(−zz∗)

×
{k,l}∑
i=0

{m,n}∑
j=0

k!l!m!n!(−1)i+j

i!(k − i)!(l − i)!j !(m− j)!(n− j)! z
l+m−i−j z∗ k+n−i−j

= δl+m,k+n
√
k!l!m!n!

{k,l}∑
i=0

(−1)i

i!(k − i)!(l − i)!
{m,n}∑
j=0

(−1)j (l +m− i − j)!
j !(m− j)(n− j)!

= δl+m,k+n
√
k!l!

m!n!

1

(l − n)!
l−n∑
i=0

(−1)i(l − n)!
i!(l − n− i)!

= δk,mδl,n. (B.3)

Thus the orthonormalization of the special Laguerre 2D functions is proved.
We now decompose{(u − 1)/2}j−k = {(u + 1)/2− 1}j−k in the definition (2.2) of the

Jacobi polynomials and apply the binomial formula to obtain a representation by powers of
(u + 1)/2 and then we change the order of summations in the arising double sum. This yields

P
(α,β)

j (u) = (j + β)!
j∑
l=0

(−1)l

l!(j − l)!
(

1
2(u + 1)

)j−l j−l∑
k=0

(j − l)!(j + α)!

k!(j − l − k)!(j + α − k)!(β + k)!
.

(B.4)

The inner sum can be evaluated by means of the convolution formula for the binomial
coefficients following from the product of two binomials:

{m,n}∑
k=0

m!n!

k!(m− k)!(n− k)!(l + k)!
= (l +m + n)!

(l +m)!(l + n)!
≡ n!

(n + l)!
lim
|u|→∞

(
2

u

)n
P (m−n,l)n (u).

(B.5)

By using this, one obtains from (B.4) the following representation of the Jacobi polynomials
(the only place we found a similar relation is [26] (22.3.2), author, Hochstrasser)

P
(α,β)

j (u) = (j + β)!

(j + α + β)!

j∑
l=0

(−1)l(2j + α + β − l)!
l!(j − l)!(j + β − l)!

(
1
2(u + 1)

)j−l
= (−1)jP (β,α)j (−u). (B.6)

Now, by settingu = 1 in (B.6) and by the substitutionsj → m,α → k, β → n−m and by
using (2.3) for the Jacobi polynomials with argumentu = 1, one obtains the identity (B.2).
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From the two very different representations of the Jacobi polynomials in (2.2) and (B.6),
one obtains the following relation in the limiting case|u| → ∞:

lim
|u|→∞

(
2

u

)j
P
(α,β)

j (u) =
j∑
k=0

(j + α)!(j + β)!

k!(j + α − k)!(j − k)!(β + k)!
= (2j + α + β)!

j !(j + α + β)!
. (B.7)

Forα→ m− j, β → n− j , this yields binomial coefficients in the form

lim
|u|→∞

(
2

u

)j
P
(m−j,n−j)
j (u) = (m + n)!

j !(m + n− j)! . (B.8)

Furthermore, it is interesting that the identity (B.7) becomes equal to the summation formula
(B.5) after the substitutionsj → n, α → m − n, β → l and subsequent multiplication
by n!/(n + l)!. Thus both summation formulae (B.2) and (B.5) considered in this appendix
possess a relation to the Jacobi polynomials which is revealed by taking into account the
different representations (2.2) and (B.6) of these polynomials.
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